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[NTRODUCTION

In this paper the approximation of a continuous function by generalized
rational functions over finite subsets of some interval [a, 5] of the real line
will be considered. Our principal purpose is to extend a convergence result
proved in [1] for polynomial rational functions to a more general class of
rational families that would include the polynomial and trigonometric
rational families as examples. In particular, we shall be interested in the
question of the existence and of the convergence of these discrete best
approximations to a best approximation over [a, b] as the size and density
of the finite set increases. Under certain circumstances (which always hold
in the polynomial or trigonometric case) a subsequence will converge
uniformly over [a, ] to a best approximation (cver [a. b]).

This result will be obtained using the resuits and techniques of both [i]
and [2]. As in [1] and [2] we shall consider only approximation in the I,
norms for 1 < ¢ < o0,

Let P ==spanip, ..., p,} and Q = span{o, ...., 0,} be Haar subspaces of

%la, b] of dzmenswn n and m respectively and let 1 ¢ < oo be arbitrary
but fixed. There are then three rational families that come into consideration.

¢

/\

K ={plgipeP,gec @, qg(x)>0forall xeig o]}

R={plglpeP geQ q(\’)>0f01a xe{a,bland 'pig, < )
R = plg < oo}

In [1} it was shown that R is the norm closure of R~ and that each
feLia, b] has a best approximation in R. For this paper it is convenient
to consider the larger class R. Using the same techniques exactly as in [2]
we have the following theorem which we only state
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THEOREM 1. Ler fe Lja, b] where 1 <t < co is arbitrary but fixed.
Then f has a best approximation in R.

The above result is the only one from [2] that will be needed in this paper.

DISCRETE PROBLEM

Let X ={x;,..., xp} Cla, b] with M =m 4+ rn -+ 1 and let R(X) denote
the set {p/glpeP,qcQ,q(x) =0 for all xe X}. Then if || -|| is a given
norm on B(X) = {f| f is a real-valued function on X} and fe B(X) is given,
we seek r* € R(X) such that || f — r* || = inf,cpp || f — r 1. In [1] the existence
question using norms of the type ||fl = [Daex | OO/ for 1 <t < 0
was studied. Since X has finitely many elements, best approximations always
exist in the pointwise closure of R(X) (denoted by ITX)). Thus an explicit
description of Iﬁ is of interest. This was done in [I1] and we now list
those results since they will be needed here. As in [1], the notation R(Y)
where Y is some subset of [a, b] will denote the set {p/g|pe P, g Q,
q(x) =0 forall xe Y}.

DerFNITION.  Let S; denote the set of functions g in B(X) such that there
exists some set S C X (depending on g) containing at most & = min(n — 1,
m — 1) elements and some rational function p/g in R(X ~ S) with p(x) =
g(x) = 0 for all x € § for which g = p/qg on X ~ §.

DEerINITION.  Let S, denote the set of all functions g in B(X) such that g
is zero except precisely on some subset 7 C X (depending on g) having at
most m — 1 elements.

We then have the following from [1]:

THEOREM 2. The set R(X) is given by S; U S, .

COROLLARY. Let 1 <t << oo be arbitrary. If fe B(X) has geS, (or
g €8S,) as a best approximation with respect to the corresponding discrete L,
norm then g = f on the associated set S (or T if g € S,).

CONVERGENCE OF DISCRETE APPROXIMATIONS

Now assume that fe Cfa, b] is given and that it is desired to calculate
a best approximation to f from R+ with respect to the L; norm where
1 <t < o is arbitrary but fixed. To do this, [a, ] is replaced by a sequence
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of grids of the form [h,] = {a + kh, | k =0, 1,..., N} where i, = (b — a)/ N,
and N, — oo as ¢ — o and the L; norm is replaced by its discrete analog,

1g g = hy* (

. 1t
> ig(-wlt) .

re[h,1 !

A best approximation is calculated with respect to each of the above
discrete porms from R([#,]) (provided such a best approximation exisis}
and the convergence question is whether or not these computed approxima-
tions converge in some sense to a best approximaticn to f over [g, &] from
R~ (or possibly R or R). The following concept of normality is basic to the
question of convergence.

DEFINITION.  An element ry=p,/q, € R is called normal if dim( p,Q + g,2) =
m -+ n — 1. The symbol NP will denote the set of all functions in L], 5}
having only normal best approximations in R. (Recall 7 is arbitrary but
fixed.)

The following result from [3] will be useful.

Tueorem 3. Let [, B] be a subinterval of [a, b} and define a norm on @
(restricted io [, B]) by ligil = Se i lby| where g =Y byoy, . Assume
that the set Ot ={ge Q | g(x) >0 for all x€la, Bl and | q|| = 1} is non-
empty. Let R ={plqlpe P,qe Q*}. Define A: P D Ot — Rt by A(p, q) =
pla. Then A is topological at (p, , qy) if and only if pylq, is normal.

Remark. 1In [3] the norm used on the elements of O was the uniform
norm. The proof, however, is the same using the norm given above and
this is more convenient for the purposes of this paper.

In what follows, the symbol || g|., where A4 is a subset of [2,] and
g B([h,) will denote AT e g()H). To simplify notation we will
shorten || [l;5 to || l, . The L, norm on [a, b] will be denoted by 1| ||,. We
shall also make the following assumption.

AssumptioN. If ge L,fa, b] has the property that jz grdx =0 for all
r € R~ then g = 0 (as an element of ;).

By a theorem of Cheney and Goldstein {4} this assumption is satisfied
by both the polynomial and trigonometric rational families. As a consequence
of this assumption we have the following lemma.

Lemma 1. Suppose fe Cla, b] is not the zero function and that 1 <t < co.
Ther O cannot be a best approximation to f from R~.

Proof. If 0 is best, then the function ¢,{}) = fz | f+ Aritdx has a
minimum at A = 0 for each re R". But g, is differentiable and a direct
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calculation gives @(0) = ¢ fs [ f 1Y (sgn f)r dx. But p(0) = 0 for all r € R¥
so that | f|*~1sgn(f) = 0 almost everywhere and this clearly implies that
f =0 almost everywhere. But f is continuous so f(x) == 0 for all x and this
is a contradiction. Q.E.D.

LemMA 2. Let f= 0 be continuous on [a,b] and if t = 1 assume Q is
not a best approximation to f from R*. For each v, let g, be a best approxima-
tion to f from R([h,]). Then there is a v, such that for all v = v, , g, is not
in the set S, of Theorem 2.

Proof. Assume the lemma is false. Then there is a sequence of subsets
L; =T, Clh,] such that each L; contains at most m elements and such
that ¢, =g, =f on L; and vanishes elsewhere. Let C; = [, ]~ L; and
let r, be any element of R* such that || f||, > |.f— roll:. The hypotheses
and assumption imply this is possible. Then || f— g.ll, <|f— #ll, for
all v and so by continuity of f and /' — r, (and since each L; has at most m
points) we obtain

iflle = E;rﬁ If = @i, < @ 1S = rolly, =11/ — rolls

contradicting || fll; > [|.f — ro ll; - Q.E.D.

Remark. The proof of the following lemma is a simple revision of a
similar lemma in [1].

LEmMMA 3. Ler 1| <<t << oo be arbitrary and let fe Cla, b]. Assume that
Jor each v, g, €8, is a best approximation to f with respect to the norm || - ||,
and let v, and S, C [h,] be such that v, = p.Jq, € R([h,] ~S,), g, = r. on
[h,] ~ S, , and S, contains I, < min(m — 1, n — 1) elements. Then there is
a set F Cla, b] whose complement has Lebesgue measure zero and an element
re R such that for some sequence {r,} we have r,(x) — r(x) for all x<cF.
In fact, F — \);_, F; where F; C F,,, ,jl =12,..F 'is a finite union of closed
intervals, and r, — r uniformly on each F; .

Proof. Let A, = [h,] ~S,. The sequence {}Ir,,HAu} 1s bounded since
ILf— rolla, <IS— golle <Ifll,—Ifll; as v — co. Moreover, we may
assume that || ¢, ||, = 1 for all .

CLam. ]| py o} is bounded.

Proof. Assume the claim is false and let r, = r,f|| p, . . By passing to
a subsequence if necessary, we may assume that {j r, | 4, 0. Let p, denote
P/l e ll= - Then we may assume that p,, — p* € P and ¢, — ¢* € Q uniformly
where || p*|lo =1 ¢*|l. = 1. Then r, —> p*/g* uniformly on each closed
subset of the set {x | g*(x) == 0}. Pick a closed subinterval I = [«, 8] C [4, b]
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| PN, = (=5 7)
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such that neither p* or ¢* has a root in I and let B, denoie the set
I7ils, > |
. M%mh

([h,] ~ S,) n 1. Then inf,, | p*(x)| = & > 0 so that
it
o]
( (b —a)b, \M!

g .
N ) 3 for all v sufficiently large,

[y

xEB,

=

where 0, is the number of elements in B . But 8,/N, — (B — «){(b — a) as
r — oo. Hence for v sufficiently large, || r, i 4, =l Fy 15, = (B — «)*/%(8/4) >0
which is a contradiction and so the claim is proved.

Thus, {li p,|'w} is bounded and so there exist subsequences (which we do
not relabel) {p,} and {¢g,} and polynomials p and g such that p, >pe P
and g, — ¢ € Q uniformly where | ¢ ||, = 1. As before, r, = p,/g, converges
to ¥ = p/q uniformly on each closed subset of the set {x | g(x) = G}. Now
this set can be written as {J;, F; where each F; is a finite union of closed
intervals with F; C F;,; for all j where r, — r uniformly on each F, . Leiting
Ag;i = A, "\ F; we have rlla, SUre—rlla, +1roba ,; 5¢ that

m || 7, <Tm rylla, + 0 <Tm (re — fla, + 1/14,)

N

lim (g, — fll + /1) <Tim g, — £l + T (£,

<Hm | fll, + Hm | ]l = 21if!, since g, is a best

approximation to f so that for each v| g, — F!l, < fll,. Thus, there is a
constant M > 0 independent of j such that im, || 4, < M for all j. But

i, = [ 1reoeas]

for each j since r is continuous on F; and so _fF [ rx)|f dx < M? for all 4.
Since F = |}, F; has measure b — a and since F; C F,, we conclud» from
the monotone convergence theorem that r e L[z, #]. But this means that
r € R and the proof is complete. Q.ED.

We are now ready for the main result of this paper.

THEOREM 4. Let 1 <t < o0 be arbitrary and let fe Cla, b). Assume that
some best approximations to f from R is in R+. For each g, , let {g,} be
sequence of best approximations to f from R({h,)). Then { g.} has a subsequence
converging almost everywhere to a best approximation to f from R. If, in
addition, f€ NP and has all its best approximations to f (from R) in R+ then

640/27/3-6
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there is a vy such that for all v > vy, [ has a best approximation in R([h,])
and any sequence of such approximations, say {r}, has a subsequence converging
uniformly over [a, b] to a best approximation to f from R+.

Proof. Let g, be as above. Then by Lemma 2 we may assume that
g, ¢S, and so by Lemma 3, some subsequence converges to an element
r € R almost everywhere. It remains to show that r is a best approximation
to f. Let ' € R+ be a best approximation to f from R. For notational con-
venience we do not relabel the convergent subsequence of {g,}. Let the
sequence of compact sets {F;}, j = 1, 2,... be as in Lemma 3. That is, F; C F;;
for all j, g, — r uniformly on each F;, F; is a finite union of closed intervals,
and the measure of (|, F;)€ is zero. Again let 4,; denote F; N ([h,] ~ S,).
Then

1f = rlla, — &0 = Fllay, < IS — 8olla, <I1F— gollo <IF— "Il

so that

T (1~ 7llay, — 1 ge — rlla) <Tm g — gyllo < BmIf— 7'l

But || f— 1L, — [[r, | fCx) ~r(x)I* de], | g, — 7 lLa,, — O (since || g, — 7 L4, <
SUPge |gs() — (), and [ f—r'll,—>|f—r"l; as v—co. Thus,
[fF [f(x)—r(\c)lfdx]l’t <|If—r"|, for all j. But since (Uj,F;)¢ has
measure zero we conclude that | f— r|l, <||f— ¢’ |l and so r is a best
approximation.

Now assume that fe NP and has all its best approximations (from R)
in R+ and suppose there exists a sequence of best approximations {g,} C S,
where g, = p./q,€ R((h,} ~T,) on [h,] ~ T, where T, has /, elements
with min(m — L, n — 1) = I, = [, > 0. We wish to show that the assump-
tion 7, > [, > 0 leads to a contradiction.

By the first part of the theorem some subsequence of {g,} say { gv} con-
verges almost everywhere to a best approximation r ER Recalhng from
Theorem 1 that p, = g, = 0 on the associated set 7, and noting that each
g, has /, zero’s we have that r can be written in the form p/g where ¢ has at
least /, roots in [a, b]. But since all best approximations to f are in R+ we
conclude that there is an r’ € R+ such that r’ = r almost everywhere. Now
let {«, B] be any subinterval of [a, b] on which g(x) is strictly positive and
such that r = r’ on [«, B]. Without loss of generality, we may assume that
lgll=1=1q"ll where |lo] =3, |b:| where o =Y} ;bso,. Since
fe NP, r must be normal and so by Theorem 3 there is a unique pair
(p,q)ecP @ Q such that r = p/g on [«, 8] and such that || g| = 1. Thus
we have p’ = p and ¢’ = p but this is a OOntladICtIOIl since g has roots in
[a, b] and ¢’ does not.
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Thus the assumption that l,,j =1, > 0 for all v leads to contradiction.
Thus given any sequence of best approximations { g,} C 8, and corresponding
sets {7,} no subsequence has the property that the number of elements in
the corresponding 7,’s (i.e. the /,’s) is bounded away from zero. Since the
/s are integers we conclude that there is an integer v, > 0 such that for all
v =20y, {, =0 so that T, = @ and so g, < R({#,]) for all such »’s. This
shows that a best approximation to fexists in R({4,]) for v sufficiently large.

Finally, the uniform convergence of some subsequence to a best approxima-
tion follows by observing that in the proof of Lemma 3, the convergence
is uniform if the limiting denominator has no roots in [a, b]. By normalizing
the denominators as in Theorem 3 and using the normality of any best
approximation and the fact that all are in R+ it is clear that the convergence
will be uniform over [a, b]. Q.E.D.

COROLLARY. If fe NP has a unique best approximation r in R and it lies
in R*, then any sequence {r,} of best approximations from R(Ih,]) converges
uniformiy to r.

Remark. *Forthe ordinary rational functions or the rational trigonometric
functions we always have that R = R+ so that the convergence of the corre-
sponding subsequences is always uniform provided that fe NP. One does
not always have that R — R+ (see [2]) when other rational families are
considered. The assumption, however, is satisfied by a wide class of families.
For example, if P is any Haar family and § = span{l, &} (where @ is
continuous and monotone on [a, b]) then the assumption is satisfied. For
such families Theorem 4 will apply to functions having at least one best
approximation in R+,
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